The generator matrix
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X X X X X X X X X X X X X X X 1 1 1 1 1 1 X X 1 X X X X X X X X X X X X 1 2 X
0 2X+2 0 2X+2 0 2X+2 0 2X+2 0 2X+2 0 2X+2 0 2X+2 0 2X+2 2X 2 2X 2 2X 2 2X 2 2X 2 2X 2 2X 2 2X 2 2X+2 2X+2 2X+2 2X+2 2X+2 2X+2 2X+2 2X+2 0 2X 0 2X 0 2X 0 2X 0 0 0 0 2X 2X+2 2 2X 2 2X 2 2X 2 2 2 0 2 0 2 2 2X 0 2X+2 2X+2
0 0 2X 0 0 0 2X 0 0 2X 0 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 0 0 0 0 0 0 0 0 0 0 0 0 2X 2X 2X 2X 0 0 0 0 2X 2X 2X 2X 0 0 2X 2X 2X 0 2X 2X 2X 2X 2X 0 0 2X 0 0 0 2X 2X 0 0 0 0 2X
0 0 0 2X 0 0 0 2X 2X 2X 2X 2X 2X 0 2X 0 0 0 0 0 2X 2X 2X 2X 2X 2X 2X 2X 0 0 0 0 0 0 2X 2X 2X 2X 0 0 0 0 2X 2X 2X 2X 0 0 0 2X 2X 0 0 0 0 0 0 2X 2X 2X 2X 2X 2X 2X 0 2X 0 0 0 0 2X 2X
0 0 0 0 2X 2X 2X 2X 2X 0 0 2X 0 2X 2X 0 0 0 2X 2X 2X 2X 0 0 0 0 2X 2X 2X 2X 0 0 0 2X 2X 0 0 2X 2X 0 2X 2X 2X 2X 0 0 0 0 0 0 2X 2X 2X 0 0 2X 2X 2X 0 0 2X 2X 0 0 2X 2X 2X 0 0 2X 2X 0
generates a code of length 72 over Z4[X]/(X^2+2) who´s minimum homogenous weight is 70.
Homogenous weight enumerator: w(x)=1x^0+59x^70+128x^71+152x^72+128x^73+31x^74+4x^76+3x^78+3x^80+1x^82+2x^102
The gray image is a code over GF(2) with n=576, k=9 and d=280.
This code was found by Heurico 1.16 in 84.4 seconds.